Chapter 2: Symmetries

Coordinate Symmetries

We show here that coordinate directions in which the metric (line element) doesn't change always correspond to Killing vectors.

Theorem: Suppose that $\{x=y^0,y^1,…\}$ are orthogonal coordinates, so that 1) \begin{equation} d\rr = h\,dx\,\xhat + \sum\limits_i h_i\,dy^i\,\yhat{}^i \end{equation} and suppose further that the coefficients $h=h_0,h_1,…$ do not depend on $x$, that is, suppose that \begin{equation} \Partial{h}{x} = 0 = \Partial{h_i}{x} \end{equation} Then $\XX = h\xhat$ is a Killing vector.

Proof: 2)

Our orthonormal basis of 1-forms is $\{\sigma^x=h\,dx,\sigma^i=h_i\,dy^i\}$. The structure equation for $d\sigma^x$ is \begin{align} 0 &= d\sigma^x + \sum\limits_i\omega^x{}_i\wedge\sigma^i \nonumber\\ &= dh \wedge dx + \sum\limits_i\omega^x{}_i\wedge h_i\,dy^i \label{gstruct} \end{align} Writing \begin{equation} \omega^x{}_i = \Gamma^x{}_{ix}\,\sigma^x + \sum\limits_j\Gamma^x{}_{ij}\,\sigma^j \end{equation} and collecting terms not involving $dx$, we obtain \begin{equation} \sum\limits_{i,j} \Gamma^x{}_{ij}\,\sigma^j\wedge\sigma^i = 0 \label{gsym} \end{equation}

On the other hand, using the results (and notation) of Uniqueness, we have \begin{align} 2 \Gamma_{xij} &= g(d\sigma_x,\sigma_i\wedge\sigma_j) - g(d\sigma_j,\sigma_x\wedge\sigma_i) + g(d\sigma_i,\sigma_j\wedge\sigma_x) \nonumber\\ &= g(d\sigma_x,\sigma_i\wedge\sigma_j) \label{gform} \end{align} where \begin{equation} \Gamma_{xij} = \epsilon\,\Gamma^x{}_{ij} \end{equation} and \begin{equation} \epsilon = \xhat\cdot\xhat = \pm1 \end{equation} (The last two terms in the first equality in (\ref{gform}) vanish, because $d\sigma_i=dh_i\wedge dy^i$ contains no $dx$ terms by assumption, and is hence orthogonal to any 2-form containing $\sigma^x$.) Since the final expression in (\ref{gform}) is antisymmetric in the indices $i$ and $j$, so is $\Gamma^x{}_{ij}$, that is, \begin{equation} \Gamma^x{}_{ji} = -\Gamma^x{}_{ij} \end{equation} But (\ref{gsym}) implies that $\Gamma^x{}_{ij}$ is symmetric in $i$ and $j$, and must therefore vanish.

Thus, $\omega^x{}_i$ is proportional to $\sigma^x=h\,dx$, and we can therefore conclude that \begin{equation} \omega^x{}_i = \frac{1}{h_i}\Partial{h}{y^i}\,dx \end{equation}

Since \begin{equation} d\xhat\cdot\xhat = \frac12 d(\xhat\cdot\xhat) = 0 \end{equation} we have \begin{align} d\xhat\cdot d\rr &= 0 + \sum\limits_i h_i\,dy^i\,d\xhat\cdot\yhat{}^i = \sum\limits_i h_i\,dy^i\,\omega_{ix} \nonumber\\ &= -\epsilon\sum\limits_i h_i\,dy^i\,\omega^x{}_i = -\epsilon\,dh\,dx \end{align} and of course \begin{equation} \xhat\cdot d\rr = \epsilon\,h\,dx \end{equation}

Putting this all together, we have \begin{align} d\XX\cdot d\rr &= d(h\,\xhat)\cdot d\rr \nonumber\\ &= dh\,\xhat\cdot d\rr + h\,d\xhat\cdot d\rr \\ &= \epsilon\,h\,dh\,dx - \epsilon\,h\,dh\,dx \nonumber\\ &= 0 \nonumber \end{align}

Thus, $\XX$ is indeed a Killing vector, as claimed.

1) Throughout this section, all sums are shown explicitly; repeated indices are not summed over otherwise. Furthermore, $x$ is not included in the sums.
2) This proof is easier using coordinate bases, rather than the orthonormal bases used here, but that is beyond the scope of this book.

Personal Tools